Hematopoietic stem-cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: defective regulation of cytokine receptors and protein kinase C.

نویسندگان

  • D V Serreze
  • J W Gaedeke
  • E H Leiter
چکیده

The immunopathogenesis of autoimmune insulin-dependent diabetes in NOD mice entails defects in the development of macrophages (M phi s) from hematopoietic precursors. The present study analyzes the cellular and molecular basis underlying our previous finding that the Mø growth factor colony-stimulating factor 1 (CSF-1) promotes a reduced level of promonocyte proliferation and M phi development from NOD bone marrow. CSF-1 stimulation of NOD marrow induced Møs to differentiate to the point that they secreted levels of tumor necrosis factor alpha equivalent to that of controls. However, CSF-1 failed to prime NOD M phi s to completely differentiate in response to gamma-interferon, as shown by their decreased lipopolysaccharide-stimulated interleukin 1 secretion. These defects, in turn, were associated with an inability of CSF-1 to up-regulate c-fms (CSF-1 receptor) and Ifgr (gamma-interferon receptor) expression. Even though the combination of CSF-1 and gamma-interferon up-regulated c-fms and Ifgr transcript levels in NOD M phi s to levels induced in control M phi s by CSF-1 alone, the protein kinase C activities coupled to these receptors remained 4-fold lower in NOD M phi s than in M phi s derived from the marrow of diabetes-resistant NON and SWR control mice. Despite expressing the diabetogenic H-2g7 haplotype, M phi s derived from cytokine-stimulated marrow of the NON.H-2g7 congenic stock were functionally more mature than similarly derived M phi s from NOD mice. Whereas diabetes resistance was abrogated in 67% of irradiated (NOD x NON)F1 females reconstituted with NOD marrow, no recipients became diabetic after reconstitution with a 1:1 mixture of marrow from NOD and the congenic stock. Thus, failure to develop functionally mature monocytes may be of pathogenic significance in NOD mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal hematopoiesis in Gab2 mutant mice.

Gab2 is an important adapter molecule for cytokine signaling. Despite its major role in signaling by receptors associated with hematopoiesis, the role of Gab2 in hematopoiesis has not been addressed. We report that despite normal numbers of peripheral blood cells, bone marrow cells, and c-Kit(+)Lin(-)Sca-1(+) (KLS) cells, Gab2-deficient hematopoietic cells are deficient in cytokine responsivene...

متن کامل

Highly efficient lentiviral-mediated human cytokine transgenesis on the NOD/scid background.

Human neo-organ formation from stem cells can only be assayed by in vivo xenotransplantation. The human nonobese diabetic-severe combined immunodeficient (HuNOD/scid) CD34+ cell transplantation is a model that allows examination of hematopoietic tissue formation, although human hematopoietic cell maturation is abortive. Conventional humanization of the cytokine microenvironment has depended on ...

متن کامل

Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation

Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...

متن کامل

c-Myc is a target of RNA-binding motif protein 15 in the regulation of adult hematopoietic stem cell and megakaryocyte development.

RNA-binding motif protein 15 (RBM15) is involved in the RBM15-megakaryoblastic leukemia 1 fusion in acute megakaryoblastic leukemia. Although Rbm15 has been reported to be required for B-cell differentiation and to inhibit myeloid and megakaryocytic expansion, it is not clear what the normal functions of Rbm15 are in the regulation of hematopoietic stem cell (HSC) and megakaryocyte development....

متن کامل

HEMATOPOIESIS AND STEM CELLS AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species

Although AKT is essential for multiple cellular functions, the role of this kinase family in hematopoietic stem cells (HSCs) is unknown. Thus, we analyzed HSC function in mice deficient in the 2 isoforms most highly expressed in the hematopoietic compartment, AKT1 and AKT2. Although loss of either isoform had only a minimal effect on HSC function, AKT1/2 double-deficient HSCs competed poorly ag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 90 20  شماره 

صفحات  -

تاریخ انتشار 1993